[데이터 시각화] Seaborn Kdeplot 사용해보기
·
데이터분석/데이터시각화
* 공부한 것을 정리한 글이므로 틀린 내용이 있을 수 있습니다. * 더 좋은 방법 또는 틀린부분이 발견될 시 계속 수정하며 업데이트 할 예정입니다. 처음보는 데이터의 분포가 궁금할때 시각화를 통해 전체적인 분포를 보고 싶을때가 있습니다. seaborn의 경우 데이터프레임안에서 카테고리별로 시각화를 시킬 수 있어서 특히 좋은 것 같습니다. seaborn 모듈의 penguins 데이터 셋을 사용하여 kdeplot을 사용해 보겠습니다. import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns df = sns.load_dataset('penguins') df.head() penguins 데이터 셋은 'A..
[시계열 시각화] plotly를 통한 시계열 시각화
·
데이터분석/데이터시각화
seaborn에 이어서 plotly를 통해 시각화를 진행해보려고 합니다. seaborn과 마찬가지로 matplotlib보다 쉽고 보기 좋게 시각화를 할 수 있습니다. 시계열에서 중요한 일별, 월별, 연도별 그래프를 쉽게 그릴 수 있는 점이 특히 좋은 것 같습니다. 이번 데이터는 darts 데이터셋에 미국 gasoline데이터 입니다. import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.express as px from darts.datasets import USGasolineDataset df_gasoline = USGasolineDataset().load().pd_dataframe() df_gasolin..
[시계열 시각화] seaborn으로 시계열데이터 그려보기
·
데이터분석/데이터시각화
계절성을 비롯한 시계열 데이터 특성을 눈으로 확인하기 위해서는 시각화가 중요하다고 생각합니다. matplotlib으로 그릴수도 있지만 좀 더 화려한 시각화를 하기 위해..! seaborn을 써서 기본적인 시계열 데이터 시각화를 정리해보려 합니다. 시각화 데이터는 월별 데이터입니다. 언뜻 보기엔 패턴이 있는거 같기도 하고 없는 거 같기도 하네요 계절적 특성이 있는 확인하기 위해 년도, 월 컬럼을 생성해 주겠습니다. import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # 계절성 확인을 위해 년도, 월 컬럼 생성 df['year'] = df.index.year df['month'] = df.ind..