시계열 평가지표(Forecasting Metrics) 정리
·
데이터분석
시계열 평가지표에 대해 정리해 보려 합니다. 회귀분석의 평가지표를 사용하며분류문제에서 상황에 따라 필요한 평가지표가 있듯이 상황에 따른 평가지표가 존재합니다. 각 평가지표들이 왜 나오게 되었는지와 특징들을 간략하게 한번 정리해보려 합니다. 1. SSE (sum of squared errors): N개의 데이터의 (실제값- 예측값)의 제곱값의 합가장 기본적인 실제값과 예측값의 차이값의 제곱의 합입니다. 2. MSE (Mean Squared Error) MSE는 1번의 SSE값을 N(데이터수)으로 나눠준 값입니다.예를 들어 100개의 데이터를 예측한 결과와 1000개의 데이터를 예측한 결과를 비교할 경우 단순합인 SSE를 쓰게 되면 형평성이 맞지 않게 됩니다. 이런 문제를 해결하기 위해 데이터 개수로 나눠..